

GPS Probe Data Collection and Applications

What is GPS Probe Data Collection

- GPS Probe Data is a Non-Intrusive Collection From Vehicles and Consumer Smartphones.
- Other Non-Intrusive Collection Techniques Include Cellular Data and Location-Based Services Data

How It Works

Devices Emit GPS Waypoint (Location) at Various Intervals

Probe Data Vs. Wi-Fi and Bluetooth

	Probe Data	VS Bluetooth/Wi-Fi
Collection	"Active"	"Passive"
Typical Capture Rates	1-5%	10-40%
Typical Uses	High-Volume	High and Low Volume

Probe Data Providers and Products

Example Providers: TomTom, HERE, INRIX

Provider Products: INRIX Example

Real Time Data

Speed and Travel Time "Roadway Analytics"

Raw Data "Trips Data"

Probe Data Applications

- Speed
- Travel Time
- Performance Metrics
- Origin-Destination
- Route Utilization
- Others

Roadway Analytics: Speed and Travel Time Study

Study Area: I-70 Between I-76 and I-25

Objective: To Understand Speed and Travel Time Relationships During Typical Weekday in May 2017

Summarized Performance Metrics

Corridor Name	Metrics	6:00 AM	6:15 AM	6:30 AM	6:45 AM	7:00 AM	7:15 AM	7:30 AM	7:45 AM	8:00 AM	8:15 AM	8:30 AM	8:45 AM	9:00 AM
I-70 EB	speeds	63.39	57.4	41.25	35.68	38.7	37.71	31.03	29.9	32.1	33.16	34.96	36.65	43.11
I-70 EB	speedPercent5	59.43	46.87	29.43	26.39	28.06	26.55	21.62	14.32	12.4	15.18 18.88		16.05	17.67
I-70 EB	speedPercent25	61.44	54.61	37.5	30.82	32.13	33.18	25.72	25.98	29	31.79	31.85	34.64	44.79
I-70 EB	speedPercent75	65.65	62.28	49.15	44.68	48.49	45.46	40.41	40.41	46.99	46.27	47.98	49.55	57.73
I-70 EB	speedPercent95	67.86	64.49	55.61	50.1	53.64	50.24	45.12	45.35	51.52	56.13	55.27	54.12	60.22
I-70 EB	travelTimeSecs	286	316	440	509	469	482	586	608	566	548	520	496	421
I-70 EB	travelTime5	268	282	327	363	339	362	403	401	353	324	329	336	302
I-70 EB	travelTime25	277	292	370	407	375	400	450	450	387	393	379	367	315
I-70 EB	travelTime75	296	333	485	590	566	548	707	700	627	572	571	525	406
1-70 EB	travelTime95	306	388	618	689	648	685	841	1270	1466	1198	963	1133	1029
1-70 EB	comparativeSpeed	120.15	123.74	103.51	103.42	127.73	136.72	116.74	110.12	110.36	100.52	91.94	83.44	87.29
1-70 EB	comparativeSpeed5	112.65	101.05	73.84	76.5	92.63	96.25	81.36	52.73	42.64	46.01	49.67	36.55	35.78
I-70 EB	comparativeSpeed25	116.46	117.74	94.09	89.33	106.04	120.31	96.78	95.67	99.7	99.7 96.37		78.87	90.69
I-70 EB	comparativeSpeed75	124.45	134.27	123.34	129.5	160.06	164.82	152.05	148.83	161.54	140.26	126.2	112.83	116.89
I-70 EB	comparativeSpeed95	128.62	139.03	139.56	145.2	177.05	182.12	169.78	167.01	177.09	170.13	145.38	123.24	121.93
I-70 EB	congestionPcts	107.08	96.96	69.68	60.28	65.38	63.71	52.41	50.51	54.23	56.03	59.06	61.91	72.83
I-70 EB	congestionPcts5	100.4	79.18	49.71	44.59	47.41	44.85	36.53	24.19	20.96	25.64	31.9	27.12	29.86
1-70 EB	congestionPcts25	103.79	92.26	63.34	52.07	54.28	56.06	43.45	43.89	49	53.71	53.8	58.52	75.67
I-70 EB	congestionPcts75	110.91	105.21	83.03	75.48	81.92	76.8	68.27	68.27	79.38	78.17	81.06	83.71	97.53
I-70 EB	congestionPcts95	114.63	108.94	93.95	84.63	90.62	84.87	76.23	76.61	87.03	94.82	93.38	91.43	101.73
I-70 EB	historicAvgSpeeds	52.75	46.38	39.85	34.5	30.3	27.58	26.58	27.15	29.09	32.99	38.02	43.92	49.39
I-70 EB	historicAvgCongestionPcts	89.12	78.36	67.32	58.29	51.18	46.6	44.9	45.87	49.14	55.73	64.23	74.19	83.43
I-70 EB	travelTimeIndexes	0.93	1.03	1.43	1.66	1.53	1.57	1.91	1.98	1.84	1.78	1.69	1.61	1.37
I-70 EB	travelTimeIndexes5	0.87	0.92	1.06	1.18	1.1	1.18	1.31	1.31	1.15	1.05	1.07	1.09	0.98
I-70 EB	travelTimeIndexes25	0.9	0.95	1.2	1.32	1.22	1.3	1.46	1.46	1.26	1.28	1.23	1.19	1.03
I-70 EB	travelTimeIndexes75	0.96	1.08	1.58	1.92	1.84	1.78	2.3	2.28	2.04	1.86	1.86	1.71	1.32
1-70 EB	travelTimeIndexes95	1	1.26	2.01	2.24	2.11	2.23	2.74	4.13	4.77	3.9	3.13	3.69	3.35
I-70 EB	planningTimeSecs	306	388	618	689	648	685	841	1270	1466	1198	963	1133	1029
I-70 EB	planningTimeIndexes	1	1.26	2.01	2.24	2.11	2.23	2.74	4.13	4.77	3.9	3.13	3.69	3.35
I-70 EB	bufferTimeSecs	20	72	178	180	179	203	255	662	900	650	443	637	608
1-70 EB	bufferTimeIndexes	0.07	0.23	0.4	0.35	0.38	0.42	0.44	1.09	1.59	1.19	0.85	1.28	1.44

Detailed Data Output

Segment ID Road Direction Start Latitude R	End Latitude Start Longitude	e End Longitude	State/Region	District P	ostal Code	Segment Length(Mile	s) Ref Speed(miles/hou	Intersect	ion		
1187636873 70 / I-70 W W 39.7840092	39.7841174 -105.021863	-105.0282988	Colorado	Denver	80221	0.345893	57	I-70 Exit	272 / US-287	Federal Blvd	
1187596552 70 / I-70 E E 39.7834632	39.782536 -105.002756	-104.998993	Colorado	Denver	80211	0.210791	57				
1187392644 70 / I-70 W W 39.78359237	39.7850212 -105.0407722	-105.0499998	Colorado	Denver	80212	0.515724	59				
1187578445 70 / I-70 W W 39.784428	39.787118 -105.07011	-105.077012	Colorado	Jetterson	80033	0.438562	61	I-76 Exit	1A / I-70 Exi	ts 269A,269B	
118/42886/ /0/I-/0E E 39./861596	39.784455 -105.0800242	-105.071148	Colorado	Jefferson	80033	0.505063	62	I-76 Exit	1A / I-70 EXI	ts 269A,269B	
Date Time Segment ID	UTC Date Time Spee	d(miles/hour)	Hist Av Speed	d(miles/h	our) Ref S	beed(miles/hour) T	Travel Time(Minutes)	CValue Po	t Score30 P	ct Score20	ct Score10
2017-05-09T05:15:00-07:00 1187636873 201	17-05-09T12:15:00Z	57	5	8		57	0.37	100	100	0	0
2017-05-09T05:30:00-07:00 1187636873 201	17-05-09T12:30:00Z	58	5	8		57	0.35	100	100	0	0
2017-05-09T05:45:00-07:00 1187636873 201	17-05-09T12:45:00Z	60	5	8		57	0.35	93.13	100	0	0
2017-05-09T06:00:00-07:00 1187636873 201	17-05-09T13:00:00Z	60	5	7		57	0.35	98.73	100	0	0
2017-05-09T06:15:00-07:00 1187636873 201	17-05-09T13:15:00Z	58	5	7		57	0.37	100	100	0	0
2017-05-09T06:30:00-07:00 1187636873 201	17-05-09T13:30:00Z	58	5	7		57	0.37	94.93	100	0	0
2017-05-09T06:45:00-07:00 1187636873 201	17-05-09T13:45:00Z	65	5	7		57	0.32	46.67	100	0	0
2017-05-09T07:00:00-07:00 1187636873 201	17-05-09T14:00:00Z	58	5	7		57	0.35	100	100	0	0
2017-05-09T07:15:00-07:00 1187636873 201	17-05-09T14:15:00Z	65	5	7		57	0.32	68.47	100	0	0
2017-05-09T07:30:00-07:00 1187636873 201	17-05-09T14:30:00Z	58	5	8		57	0.35	97.93	100	0	0
2017-05-09T07:45:00-07:00 1187636873 201	17-05-09T14:45:00Z	59	5	8		57	0.35	90.87	100	0	0
2017-05-09T08:00:00-07:00 1187636873 201	17-05-09T15:00:00Z	60	5	8		57	0.35	99.27	100	0	0
2017-05-09T08:15:00-07:00 1187636873 201	17-05-09T15:15:00Z	58	5	8		57	0.35	100	100	0	0
2017-05-09T08:30:00-07:00 1187636873 201	17-05-09T15:30:00Z	59	5	8		57	0.35	100	100	0	0
2017-05-09T08:45:00-07:00 1187636873 201	17-05-09T15:45:00Z	59	5	8		57	0.35	96.47	100	0	0
2017-05-09T09:00:00-07:00 1187636873 201	17-05-09T16:00:00Z	58	5	8		57	0.35	100	100	0	0
2017-05-09T09:15:00-07:00 1187636873 201	17-05-09T16:15:00Z	63	5	8		57	0.33	75.6	100	0	0
2017-05-09T09:30:00-07:00 1187636873 201	17-05-09T16:30:00Z	59	5	8		57	0.35	97.47	100	0	0
2017-05-09T09:45:00-07:00 1187636873 201	17-05-09T16:45:00Z	61	5	8		57	0.33	78	100	0	0
2017-05-09T10:00:00-07:00 1187636873 201	17-05-09T17:00:00Z	59	5	8		57	0.35	41.2	100	0	0
2017-05-09T10:15:00-07:00 1187636873 201	17-05-09T17:15:00Z	56	5	8		57	0.37	86.2	100	0	0
2017-05-09T10:30:00-07:00 1187636873 201	17-05-09T17:30:00Z	60	5	8		57	0.35	89.73	100	0	0
2017-05-09T10:45:00-07:00 1187636873 201	17-05-09T17:45:00Z	55	5	8		57	0.37	100	100	0	0
2017-05-09T11:00:00-07:00 1187636873 201	17-05-09T18:00:00Z	61	5	8		57	0.33	77.13	100	0	0
2017-05-09T11:15:00-07:00 1187636873 201	17-05-09T18:15:00Z	59	5	7		57	0.35	87.07	100	0	0
2017-05-09T11:30:00-07:00 1187636873 201	17-05-09T18:30:00Z	62	5	7		57	0.33	88.33	100	0	0
2017-05-09T11:45:00-07:00 1187636873 201	17-05-09T18:45:00Z	61	5	7		57	0.33	99.73	100	0	0
2017-05-09T12:00:00-07:00 1187636873 201	17-05-09T19:00:00Z	61	5	7		57	0.33	95.27	100	0	0
2017-05-09T12:15:00-07:00 1187636873 201	17-05-09T19:15:00Z	60	5	7		57	0.35	98.87	100	0	0
2017-05-09T12:30:00-07:00 1187636873 201	17-05-09T19:30:00Z	58	5	7		57	0.35	100	100	0	0
2017-05-09T12:45:00-07:00 1187636873 201	17-05-09T19:45:00Z	57	5	7		57	0.37	100	100	0	0
2017-05-09T13:00:00-07:00 1187636873 201	17-05-09T20:00:00Z	58	5	7		57	0.35	100	100	0	0
2017-05-09T13:15:00-07:00 1187636873 201	17-05-09T20:15:00Z	58	5	8		57	0.35	100	100	0	0

Congestion Scan

Bottleneck Review

Corridor	Road Name	Intersection 11	Direction	Impact Factor	Occurrences 11	Avg Max Duration (min)	Average Max Length (miles)
I-70 EB	1-70 E / US-6 E / US-50 E / US-24 E / US-40 E	I-70 Exit 281 / Peoria St	E	14635	6	202	7.50
I-70 EB	I-70 E / US-6 E / US-50 E / US-24 E / US-40 E	I-70 Exits 282,283,284 / Chambers Rd	E	11793	4	196	9.35
I-70 EB	I-70 E / US-6 E / US-50 E / US-24 E / US-40 E	I-70 Exit 2758 / CO-265 Brighton Blvd / Brighton Blvd	E	10182	31	72	2.83
1-70 WB	I-70 W / US-6 W / US-50 W / US-24 W / US-40 W	I-70 Exit 275C / York St / 45th Ave	w	8576	1	723	7.37
I-70 WB	1-70 W / US-6 W / US-50 W / US-24 W / US-40 W	I-70 Exit 272 / US-287 Federal Blvd	w	7547	36	26	5.01

Raw Trips Data: Origin-Destination Study on E11 through Dubai, UAE

Objective: Determine OD Relationships Throughout The Corridor During Various Peak and Non-Peak Hours.

- Over 1 Million Trips Represented By Over 80 Million Waypoints
- Two Months of Data (February and March)
- 53 Zones Represented at Each On/Off Ramp Accessing Freeway
- Build Customized Tool in an Online Web App With SQL Server

<mark>I K</mark> IK	APT	URIT	Ho	ome	Map Vie	w OI	O Matrix																Study 🖸)ubai Fe	b 20 - Fe	≥b 25 (2) •
OD	DD MATRIX Zones:							51) -	From: 02/06/2017 12:00 AM				To: / Hrs: 96 02/10/2017 12:00 AM			Week Days:			Pea	Peak Hrs:			Non Stop Compute Matrix			
Matrix Val	ues: TRI	PS DU	JRATIO	N																						
	pages 1 2																									
From / To	o 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	24	25	26	27
1		169	1	18	138	<mark>564</mark>	54	24	40	46	20	53	38	57	21	7	86	32	46	18	36	83	20	1	13	180
2	53		1	13	29	52	10	3	10	17	9	17	6	9	1	1	10	5	9	2	3	8	1	1	3	11
3	10	0		31	7	29	1	4	7	7	1	0	0	1	0	5	3	1	2	4	0	3	0	0	0	7
4	9	32	22		59	65	6	3	6	5	1	1	1	2	1	1	7	3	1	1	4	13	2	0	6	7
5	<mark>319</mark>	145	3	89		197	50	10	21	36	20	34	15	34	7	3	37	11	24	7	11	23	3	4	13	164
6	<mark>417</mark>	23	1	40	162		55	16	16	43	19	31	13	21	1	4	33	14	15	9	5	32	4	4	24	25
7	42	8	4	12	33	64		57	55	47	17	34	14	25	13	4	25	5	14	4	12	31	2	1	8	26
8	14	1	0	8	13	19	158		119	34	9	16	5	8	3	1	19	4	1	2	9	17	2	2	4	16
9	40	17	4	18	39	57	126	182		167	58	93	29	39	12	3	41	4	33	10	7	25	3	2	8	49
10	57	5	0	15	28	55	50	31	154		309	346	63	72	22	14	37	8	33	15	17	43	10	1	12	57
11	19	1	0	3	9	28	16	11	47	347		358	91	110	22	12	46	14	26	17	13	49	11	2	9	69
12	29	5	0	2	10	36	21	18	50	339	922		123	127	22	14	69	23	32	20	29	71	14	1	16	99
13	24	2	0	0	6	8	13	12	24	41	38	61		238	24	34	47	17	9	16	23	44	11	2	13	110
14	164	14	4	14	43	119	50	31	168	148	147	230	484		117	55	99	19	43	34	41	81	8	6	43	88
									SBAY	AI AL	,t	R										10		0.40	+	<u> </u>
	Madcare	Hospi				Dubai	Creek	حمر تجارع			25	18	30 R	as Al Kh	or Rd				+	10	13	38	00:2	20:40	S	how
SAEA	s Y			A .			/	-			27			/					_	13	1	24	00:2	25:23	s	how

Key Takeaways

- Understand Types of Users Trips Data is Representing
- Must be Set Up in Web Environment to Handle Queries on Database
- Methodology for Trip Recognition Through Zones

Raw Trips Data: Arterial Roadway Floating Car Study Research

Route	Compass Direction	Route Distance	Run Distance	Avg Speed	Travel Time	# Stops	Start Time	Stopped Time	Congested Time	Street Class	LOS	TTI Index
EB SFD - 8E	E	0.4	0.4	25.56	0.95	0	11/17/2016 7:34	0	0	111	В	1.369327074
EB SFD - 8E	E	0.4	0.4	31.18	0.77	0	11/17/2016 7:49	0	0	III	Α	1.122514432
EB SFD - 8E	E	0.4	0.42	18.07	1.38	1	11/17/2016 8:03	0.43	0.52	111	С	1.936912009
EB SFD - 8E	E	0.4	0.41	19.94	1.23	1	11/17/2016 8:24	0.25	0.38		С	1.755265797
EB SFD - 8E	E	0.4	0.41	19.92	1.23	1	11/17/2016 8:40	0.33	0.42	111	С	1.757028112
EB SFD - 8E	E	0.4	0.4	27.61	0.88	0	11/17/2016 8:53	0	0	Ш	В	1.267656646
EB SFD - 8E	E	0.4	0.44	2.22	11.95	18	11/17/2016 15:59	8.7	11.67	III	F	15.76576577
EB SFD - 8E	E	0.4	0.42	2.27	11.23	15	11/17/2016 16:19	7.87	11.18	III	F	15.4185022
EB SFD - 8E	E	0.4	0.45	1.64	16.32	26	11/17/2016 16:44	13.47	16.12	Ш	F	21.34146341
EB SFD - 8E	E	0.4	0.43	2.16	11.82	27	11/17/2016 17:45	8.6	11.57	Ш	F	16.2037037
WB SFD - 8E	W	0.4	0.42	5.31	4.7	5	11/17/2016 7:39	2.78	3.7	III	F	6.5913371
WB SFD - 8E	W	0.4	0.42	5.04	4.97	5	11/17/2016 7:53	2.9	4.07	III	F	6.94444444
WB SFD - 8E	W	0.4	0.42	2.8	8.92	8	11/17/2016 8:11	6.67	8.28	III	F	12.5
WB SFD - 8E	W	0.4	0.42	2.61	9.72	9	11/17/2016 8:29	7.35	9.08	111	F	13.40996169
WB SFD - 8E	W	0.4	0.42	5.11	4.9	4	11/17/2016 8:46	3.27	3.93	III	F	6.849315068
WB SFD - 8E	W	0.4	0.42	5.73	4.4	5	11/17/2016 8:57	2.65	3.52	Ш	F	6.108202443
WB SFD - 8E	W	0.4	0.42	19.64	1.27	1	11/17/2016 16:14	0.18	0.32	111	C	1.782077393
WB SFD - 8E	W	0.4	0.42	18.44	1.37	1	11/17/2016 16:33	0.32	0.4	Ш	С	1.898047722
WB SFD - 8E	W	0.4	0.42	19.26	1.3	2	11/17/2016 17:03	0.1	0.4	111	С	1.817237799
WB SFD - 8E	W	0.4	0.42	9.28	2.72	2	11/17/2016 17:59	1.08	1.73	Ш	F	3.771551724

Arterial Roadway Floating Car Study Research

	FLOATING CAR	RAW PROBE TRIPS DATA
LIMITATIONS/ CHALLENGES	 Manual Limited Runs During Peak Periods \$\$\$ 	 Number of Trips Waypoint Time Spacing Defining Corridor Extents
BENEFITS	 Waypoint Frequency Pick Exact Time to Collect Data 	 No Manual Driving of Corridor Can Pull Data Historically From Multiple Days and Time Periods Reduced Costs

Arterial Roadway Floating Car Study Research

Two Approaches to Review Probe Data

- 1. Review of Individual Trips Through The Corridor
- 2. Review of "Trip Parts" Through The Corridor

GPS Location Recorder vs GPS Probe Data From Devices

Representation of Trips/Waypoints During PM Peak Hour

Good Trip Through Corridor Avg. Waypoint Spacing ~5 sec

Spotty Trip Through Corridor Waypoint Spacing Not Consistent

Arterial Roadway Floating Car Study Research

Next Steps:

- Determine Number of Consistent Waypoint Trips and Duration of Data Pull to Obtain Statistically Significant Sample
- Compile Trip Parts to Put Together Entire Corridor Congestion Metrics

